# Boxing Pythagoras

## More on 0.999…=1

In my last post, I discussed a particular video which I found to be more than a bit misleading. The discussion centered around a simple, but extremely counterintuitive notion of mathematics: the fact that the number 0.999…, or zero-point-nine-repeating, is equal to 1.

Well, as I mentioned, the very counterintuitive nature of the result led at least one of my readers to question its validity. As such, I thought I would lay out one proof of this concept, in order to make it easier for those who do not accept the result to pinpoint exactly where they disagree. I’ll break my proof down into numbered steps, to ease in that venture.

## Yet another failed attempt at showing 0.999…≠1

I’ve discussed before how mathematics can sometimes lead to very counterintuitive results. One of the most common, and famous, of these counterintuitive properties of math is that the number 0.999… (that is, zero point nine, nine, nine, repeating) is equal to 1. This one is so well known that it is fairly often taught even to Elementary and High School students. If you are unfamiliar with this discussion, I highly recommend that you watch this video from Vi Hart, in which she discusses 10 different reasons to accept this concept. Additionally, you may have fun watching this video, in which she lampoons the common objections to the concept.

Despite the fact that it is fairly simple to prove that 0.999…=1, the concept is so counterintuitive that I find people try to struggle against it– even when they know and accept the reasoning behind the equality. One such attempt comes from Presh Talwalkar. In the following video, Mr. Talwalkar attempts to demonstrate that on the Surreal number system, 0.999…≠1.

Unfortunately for Mr. Talwalkar, he is wrong. Even on the Surreals, it is still true that 0.999…=1.

## Some Unfortunate Choices in Mathematics Terminology

Words can be tricky things. The same word can often carry wholly different meanings depending upon the context in which it is used. Take, for instance, the semantic range of the word “light.” This word can carry very different meanings when used in different contexts, as the following sentences illustrate.

1. That feather is light.
2. That shade of pink is light.
3. That laserbeam is light.

Each one of these sentences is of the form “That <noun phrase> is light,” but the word “light” intends an entirely different thing, in each. In (1), “light” is a description of the weight of the feather. In (2), “light” is a description of the intensity of the shade of pink. In (3), “light” is a description of the physical nature of the laserbeam. There is a well known fallacy of logic called equivocation which involves conflating such definitions in order to arrive at a false conclusion. For example, if I said…

1. Light things weigh less than heavy things
2. This shade of pink is light
3. Therefore, this shade of pink weighs less than heavy things

…my logic would be invalid, because the definitions of “light” used in (1) and (2) are completely different.

Mathematics, unfortunately, contains some terminology which tends to lead to these same sorts of equivocation fallacies, because the common usage of a word very often differs from the mathematical usage of that word. While there are numerous examples from which I could likely choose, today I’m going to focus on a case which I believe to be particularly egregious. Today, I’m going to discuss Real and Imaginary numbers.