There is a long tradition, in philosophy, of employing paradoxical thought experiments in order to show that our understanding of some subject is either incomplete or incorrect. Quite famously, the paradoxes of Zeno of Elea puzzled philosophers and mathematicians for millennia. These enigmas can be, at once, immensely entertaining and thoroughly maddening to contemplate.

About a year ago, I was introduced to one such thought experiment which I had not previously encountered. It is known as the Grim Reaper Paradox, and the version with which I will interact today is presented by philosopher Alexander Pruss. The thought experiment proceeds as follows:

Fred is sitting in a room at 8:00 am. There exists an infinite number of Grim Reapers along with Fred, each of which is currently dormant. When any individual Grim Reaper becomes activated, if Fred is still alive, then that Reaper will instantaneously kill Fred; however, if Fred is not alive, the Reaper will return to a dormant state and continue to do nothing. Each of the Grim Reapers is timed to activate at a specific time after 8:00 am. The last Reaper will activate at 9:00 am. The second to last activates at 8:30 am. The third from last at 8:15 am. In general, the *n*th from last Grim Reaper will activate after hours have passed.

Now, we are guaranteed that Fred will not survive past 9:00 am. After all, if he is alive at 9:00 am, then the last Grim Reaper will activate and kill him. However, he can’t have lasted that long, either, since the previous Grim Reaper would have killed him if he had survived until it activated. In fact, we can generalize this: the *n*th from last Grim Reaper cannot have killed Fred, because if he had survived until hours after 8:00 am, then the *(n+1)*st from last Grim Reaper would have killed him.

Therefore, we see that Fred cannot survive until 9:00 am, and yet we have also shown (by mathematical induction) that none of the Grim Reapers can have been the one which killed Fred. Thus, we have come to a paradox.

Read more…